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SUMMARY:  

Wind loads on buildings with non-rectangular plans were investigated through limited experimental and 

computational Fluid Dynamics (CFD) studies. Therefore, the wind design of non-rectangular buildings is described 

through short guidance in the current building codes and standards. This paper predicts wind loads on roofs and 

walls of non-rectangular buildings using Ensemble Machine Learning (EML) technique. The EML combines 

predictions of several regressors, such as Gradient Boost (GB) and Multi-Layer Perceptron (MLP), and results in 

predictions more accurate than the outputs of a single regressor. Numerous tests were performed at the wind tunnel 

for building models with plan shapes of L, T, X, and U to create a dataset for the Machine Learning (ML). An 

exhaustive Grid Search with K-fold Cross Validation was used for hyperparameters optimization. The Ensemble 

Machine Learning models predicted wind pressure coefficients with minimal Mean Squared Error (MSE) and 

coefficients of determination (R-squared) of up to 0.98.  
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1. MOTIVATION 

The wind design of buildings with rectangular plans is well-described in wind codes and 

standards. On the other hand, wind design of buildings with irregular (non-rectangular) plans is 

available through insufficient and short guides in wind provisions. Several wind studies 

investigated wind loads on non-rectangular buildings in wind tunnels and through CFD, (e.g., 

Cook, 1990; Jamieson et al., 1992; Stathopoulos and Zhou, 1993; Morse, 2003; Gomez et al., 

2005; Amin and Ahuja, 2011; Bandi et al., 2013; Raj and Ahuja, 2013; Bhattacharyya et al., 

2014; Chakraborty et al., 2014; Mukherjee et al., 2014; Paul and Dalui, 2016; Shao et al., 2019; 

and Bhattacharyya and Dalui, 2020; Meena et al., 2022). However, the past studies are limited; 

for instance, most of these studies did not include peak wind loads and reported only mean wind 

pressures. Machine Learning is a powerful tool for performing multiple and multivariate 

regression of complex data. ML has been implemented in wind engineering to predict wind loads 

and wind speeds (e.g., Bre et al., 2018; Higgins and Stathopoulos, 2021; Sang et al., 2021). 

 

This paper uses a wind tunnel data-ML pipeline to predict wind loads on irregular buildings. 

Wind tunnel data were collected at Concordia University for L-, T-, X-, and U-shaped models to 

measure pressures on limited irregular shapes. The experimental data were used as training and 

testing sets for ML to predict wind loads on irregular buildings. 



 

 

2. METHODOLOGY 

As WT models are difficult to make, it was decided to assemble all irregular configurations using 

four basic models and wooden dummy models. The basic models were constructed using a 

length scale of 1:200 and equipped with taps on roofs and walls, they represent four buildings, 

three triangular buildings, and one trapezoidal building, the four basic models form a rectangular 

model when they are assembled as shown in Fig. 1.a (dimensions in meters, Full-scale), the roof 

is equipped with 193 taps. Fig. 1.b presents the basic and dummy models combined to form an 

L-shaped (configuration: L1). In this study, 12 configurations of L, T, X, and U shapes were 

tested in the wind tunnel. Each shape was tested for three different plans and a height of 10 m, 

and two L-shaped configurations were tested for three heights: 5, 10, and 20 m. In addition, 72 

wind directions were considered for the L-shaped configurations (0° to 355° at a step of 5°); and 

for the rest of the shapes, the tests were performed for 36 wind directions (0° to 350° at a step of 

10°). Testing was conducted in a simulated open country exposure with a power-law exponent, 

α, of 0.14. All pressure coefficients in the study represent pressures normalized by hourly 

averaged dynamic velocity pressure at roof height.  

 

For ML, a technique called Ensemble Learning was implemented for wind load predictions; this 

technique selects the best prediction by combining the predictions of a group of regressors such 

as Random Forest (RF), Gradient Boosting (GB), Extra Trees (ET), and Artificial Neural 

Network (ANN). The implementation of ML in this paper starts with data preprocessing which 

includes One-hot-Encoding of the categorical features and features scaling (normalizing the 

features from 0 to 1) for the entire dataset, which is then randomly split into training and testing 

sets using a ratio of 7:3. Afterwards, the training set is fed into the regression algorithms for 

training, and the unseen testing set is used as a validation set of the ML models. Regressors such 

as RF, ET, and GB are based on decision trees (weak learners); in other words, those regressors 

are effective learners and use ensembles of weak learners. A multi-layer perceptron (MLP), an 

ANN, was also used for the predictions of wind loads. Eventually, the predictions of the best 

regressors are combined using a Voting regressor to result in more effective outcomes. 

Hyperparameter tuning for ML models was done using an exhaustive Grid Search with K-fold 

Cross Validation. Data preprocessing and ML models training and validation were implemented 

in Python using the Scikit-Learn library (Pedregosa et al. 2011). 

 

 
 

Figure 1. a.) Basic models and roof pressure tap layout, b.) L-shaped model. 



 

 

3. RESULTS  

Testing of the configuration L1 (shown in Fig. 1.b) produced a dataset of 13,896 instances (72 

wind directions x 193 taps), which was divided into a training set (70%) and a testing set (30%). 

The ensemble method was implemented to train the ML models. Fig. 2 presents ML predictions 

of local mean Cp on the testing (unseen) set compared with the measured (WT) local mean Cp of 

six regressors for the L-shaped configuration (L1), height is 10 m.  

 

Among the six models, predictions of RF have the maximum MSE (0.004) and the Lowest R-

squared (0.960). On the other hand, MPL and ET models have R-squared values of 0.979 and 

0.974, respectively, and outperform RF. Although the GB model has a relatively lower R-

squared than MPL and ET, it did better in the predictions of Cp around -2. The best two models, 

MLP and ET have more or less the same accuracy, and therefore, they were added up with equal 

weights using a voting regressor that takes the average predictions of ET and MLP, in other 

words, the voting regressor ensembles MLP and ET. Voting regressor 1 is more effective than 

MLP or ET and outputs better results; the R-squared is 0.981. Predictions of GB, RT, and MLP 

were also combined in another voting regressor, Voting regressor 2. The ensemble of GB, ET, 

and MLP output predictions with slightly lower MSE than the ensemble of ET and predicted 

mean Cp more effectively around -2; however, Voting regressor 1 is more accurate for the 

predictions of mean Cp around -1. Ensemble Machine learning was also utilized to predict local 

peak pressure coefficients; the models' outputs are strongly correlated to the measured peaks 

with R-squared values comparable to those obtained for the mean Cp. In summary, Ensemble 

Learning is an effective tool for the predictions of wind loads on irregular buildings.   

 

 
 

Figure 2. a.) Comparison of predicted and measured mean Cp of six regressors, testing set. 

 

 

4. CONCLUSIONS 

Wind loads were scanned on walls and roofs of 12 irregular (non-rectangular) building 

configurations in the wind tunnel to create a dataset for ML. Ensemble ML was implemented to 



 

 

predict wind loads on irregular buildings using the experimental results as training and testing 

tests. The ML models were tested, and it was found that predictions are strongly correlated to the 

measured data with a coefficient of determination of up to 0.98. The ML model will be validated 

with different cases from the literature, i.e., other than those used for training, to generally 

inspect its ability to estimate wind loads on irregular buildings.  
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